Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
International Journal of Mathematics in Operational Research ; 24(4):537-553, 2023.
Article in English | Scopus | ID: covidwho-2316100

ABSTRACT

In this paper, we develop and analyse a modified susceptible-infected-recovered (SIR) compartment model by integrating the vaccination factor as a model parameter to investigate the effect of vaccination parameter on the long-term outcomes of the COVID-19 pandemic. Mathematical analysis is used to determine the disease-free equilibrium, the endemic equilibrium, and the basic reproduction number of the developed model. The stability of the model is studied using the Routh-Hurwitz criterion, and numerical simulations are conducted to assess the impact of vaccination on the disease at different rates. The findings suggest that vaccination rate influences the transmission dynamics, and the vaccine can speed up the COVID-19 recovery and contain the outbreak. © 2023 Inderscience Enterprises Ltd.

2.
CMES - Computer Modeling in Engineering and Sciences ; 135(2):1719-1743, 2023.
Article in English | Scopus | ID: covidwho-2238766

ABSTRACT

Cases of COVID-19 and its variant omicron are raised all across the world. The most lethal form and effect of COVID-19 are the omicron version, which has been reported in tens of thousands of cases daily in numerous nations. Following WHO (World health organization) records on 30 December 2021, the cases of COVID-19 were found to be maximum for which boarding individuals were found 1,524,266, active, recovered, and discharge were found to be 82,402 and 34,258,778, respectively. While there were 160,989 active cases, 33,614,434 cured cases, 456,386 total deaths, and 605,885,769 total samples tested. So far, 1,438,322,742 individuals have been vaccinated. The coronavirus or COVID-19 is inciting panic for several reasons. It is a new virus that has affected the whole world. Scientists have introduced certain ways to prevent the virus. One can lower the danger of infection by reducing the contact rate with other persons. Avoiding crowded places and social events with many people reduces the chance of one being exposed to the virus. The deadly COVID-19 spreads speedily. It is thought that the upcoming waves of this pandemic will be even more dreadful. Mathematicians have presented several mathematical models to study the pandemic and predict future dangers. The need of the hour is to restrict the mobility to control the infection from spreading. Moreover, separating affected individuals from healthy people is essential to control the infection. We consider the COVID-19 model in which the population is divided into five compartments. The present model presents the population's diffusion effects on all susceptible, exposed, infected, isolated, and recovered compartments. The reproductive number, which has a key role in the infectious models, is discussed. The equilibrium points and their stability is presented. For numerical simulations, finite difference (FD) schemes like nonstandard finite difference (NSFD), forward in time central in space (FTCS), and Crank Nicolson (CN) schemes are implemented. Some core characteristics of schemes like stability and consistency are calculated. © 2023 Tech Science Press. All rights reserved.

3.
Computer Modeling in Engineering & Sciences ; 0(0):1-25, 2022.
Article in English | Web of Science | ID: covidwho-1970021

ABSTRACT

Cases of COVID-19 and its variant omicron are raised all across the world. The most lethal form and effect of COVID-19 are the omicron version, which has been reported in tens of thousands of cases daily in numerous nations. Following WHO (World health organization) records on 30 December 2021, the cases of COVID-19 were found to be maximum for which boarding individuals were found 1,524,266, active, recovered, and discharge were found to be 82,402 and 34,258,778, respectively. While there were 160,989 active cases, 33,614,434 cured cases, 456,386 total deaths, and 605,885,769 total samples tested. So far, 1,438,322,742 individuals have been vaccinated. The coronavirus or COVID-19 is inciting panic for several reasons. It is a new virus that has affected the whole world. Scientists have introduced certain ways to prevent the virus. One can lower the danger of infection by reducing the contact rate with other persons. Avoiding crowded places and social events with many people reduces the chance of one being exposed to the virus. The deadly COVID-19 spreads speedily. It is thought that the upcoming waves of this pandemic will be even more dreadful. Mathematicians have presented several mathematical models to study the pandemic and predict future dangers. The need of the hour is to restrict the mobility to control the infection from spreading. Moreover, separating affected individuals from healthy people is essential to control the infection. We consider the COVID-19 model in which the population is divided into five compartments. The present model presents the population???s diffusion effects on all susceptible, exposed, infected, isolated, and recovered compartments. The reproductive number, which has a key role in the infectious models, is discussed. The equilibrium points and their stability is presented. For numerical simulations, finite difference (FD) schemes like nonstandard finite difference (NSFD), forward in time central in space (FTCS), and Crank Nicolson (CN) schemes are implemented. Some core characteristics of schemes like stability and consistency are calculated.

4.
Computation ; 10(7):120, 2022.
Article in English | ProQuest Central | ID: covidwho-1963769

ABSTRACT

In this paper, a model for the transmission of respiratory syncytial virus (RSV) in a constant human population in which there exist super spreading infected individuals (who infect many people during a single encounter) is considered. It has been observed in the epidemiological data for the diseases caused by this virus that there are cases where some individuals are super-spreaders of the virus. We formulate a simply SEIrIsR (susceptible–exposed–regular infected–super-spreading infected–recovered) mathematical model to describe the dynamics of the transmission of this disease. The proposed model is analyzed using the standard stability method by using Routh-Hurwitz criteria. We obtain the basic reproductive number (R0) using the next generation method. We establish that when R0<1, the disease-free state is locally asymptotically stable and the disease endemic state is unstable. The reverse is true when R0>1, the disease endemic state becomes the locally asymptotically stable state and the disease-free state becomes unstable. It is also established that the two equilibrium states are globally asymptotically stable. The numerical simulations show how the dynamics of the disease change as values of the parameters in the SEIrIsR are varied.

5.
ISA Trans ; 124: 124-134, 2022 May.
Article in English | MEDLINE | ID: covidwho-1039415

ABSTRACT

In this paper, we have considered a mathematical model that deals with the effectiveness of the measures that may be helpful for reducing the spread of the COVID-19 virus in the society. Here we have illustrated the importance of lock down in controlling and maintaining the spread of the COVID-19 virus. The impact of the virus on the susceptible population has been considered in the model. Also, we have taken into account the susceptible population, which by taking preventive measures viz., by having strong immunity, maintaining social distancing, wearing PPE kits and masks etc., is able to reduce the possibility of getting infected from the virus. Local as well as global stability of the equilibrium points of the model have been studied using Lyapunov function and the geometrical approach techniques. Basic reproduction number has also been obtained by using the next generation matrix. To show the effectiveness of the model, different cases obtained by varying the parameters involved in the model have been considered. A comparison between the actual number of infected cases in India and that obtained by the proposed model, showing the effectiveness of the proposed model, has also been carried out.


Subject(s)
COVID-19 , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Humans , Models, Theoretical , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL